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Three-dimensional advection of passive tracers in non-inertial flows is studied in a
finite cylinder confined by two parallel endwalls by means of numerical simulations
and laboratory experiments. The fluid is set in motion through steady or time-
periodic forcing by in-plane motion of the endwalls via a given forcing protocol. The
numerical analysis centres on a dynamical-systems approach and concerns symmetry-
based identification of coherent structures in the web of tracer paths (collectively
defining the flow topology) for a number of archetypal flow configurations. The role
of the flow topology in the process of tracer transport is investigated by numerical
tracking of finite-size material objects released at strategic locations in the flow.
Experimental validation of key aspects of the numerical results has been carried out
in laboratory experiments by flow visualization with dye and flow measurement via
three-dimensional particle tracking velocimetry.

1. Introduction
In a fluid-dynamical context the concept of ‘mixing’ refers to physical processes in

which two or more liquid substances are combined in such way that each individual
fluid is continuously distributed among the other fluids. Instances of mixing arise in
manifold forms in a wide variety of situations and disciplines. Mixing is fundamental
to many transport phenomena studied in astrophysics, geology, geophysics and
physiology. Numerous industrial activities (e.g. food processing, polymer blending,
petrochemical processing) involve fluid mixing in one form or another. Even at
a domestic level mixing is widespread; consider e.g. everyday proceedings such as
whipping of cream, stirring of coffee and dispersion of detergents.

Mixing processes span an enormous range of length and time scales and encompass
Reynolds numbers varying over forty orders of magnitude (see Ottino 1990). More-
over, mixing flows typically involve a complex interplay among mass transport and
molecular effects, rheological properties, multiphase effects, chemical reaction and
heat transfer. However, in stark contrast with the omnipresence of mixing, to date a
poor understanding exists of the underlying mechanisms (see Ottino 1990; Harnby,
Edwards & Nienow 1992; Aref 1994; King 1998). Far-reaching scientific and social
implications are therefore anticipated from expanded knowledge on mixing. The
study herein is motivated by this and aims to contribute to the present understanding
of mixing via the analysis of tractable case studies prototypical of realistic mixing
problems.
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The presented investigation is confined to three-dimensional mixing of inert incom-
pressible non-inertial Newtonian fluids with identical material properties. Under
these presumptions mixing reduces to the three-dimensional advection of passive
tracers – representing minute non-inertial particles and, in the absence of molecular
transport, scalars such as heat and mass concentration – in a single-phase non-inertial
Newtonian flow. The restriction to non-inertial flow is motivated primarily by the
hitherto ill-understood phenomenon of chaotic tracer advection in three-dimensional
viscous flows, despite its key role in a wide range of (predominantly industrial)
mixing processes. Unlike turbulent flows, where chaotic tracer motion is intrinsic to
the stochastic velocity field, in the viscous limit chaotic tracer paths typically coexist
with regular flow patterns. This reflects the essential difference between laminar and
turbulent mixing and implies that accomplishment of chaotic advection in viscous
flows – the key to efficient mixing – is highly non-trivial.

Separation of tracer and flow dynamics in viscous flows suggests that a tracer-based
(or Lagrangian) description is essential to the examination of transport phenomena
in this flow regime. In a Lagrangian representation tracer motion is described by a
dynamical system (see Aref 1994); in the viscous limit, the smooth nature of the flow
permits a deterministic analysis of this system with generic dynamical-systems meth-
odology. In this approach the tracer dynamics are investigated in terms of coherent
structures in the web of tracer paths (collectively constituting the flow topology). These
coherent structures impose geometrical constraints on the tracer motion and thus
determine the tracer advection.

For two-dimensional incompressible flows, the Lagrangian system defines a
Hamiltonian system (see e.g. Aref 1994). In such systems explicit time-dependence
(commonly introduced via time-periodic forcing) is a necessary prerequisite for attain-
ing chaotic advection; two-dimensional steady flows invariably result in non-chaotic
tracer dynamics. Numerous studies are dedicated to chaotic advection in two-
dimensional time-periodic flows, of which but a few are addressed below. Pioneering
work involves the ‘blinking-vortex flow’ discussed in Aref (1984); an extension to
this model is the ‘blinking-rotlet flow’ (see Meleshko & Aref 1996). The ‘classical’
two-dimensional laminar mixing flow is found in the lid-driven cavity flow introduced
in Chien, Rising & Ottino (1986) and Ottino et al. (1988) and server as proto-
typical configuration in many mixing-related investigations: see e.g. Meleshko (1994),
Meleshko & Peters (1996), Franjione, Leong, & Ottino (1989), Ottino, Jana &
Chakravarthy (1994) and Kruijt et al. (2001). Other two-dimensional bounded flows
include the ‘journal-bearing flow’ (Aref & Balachandar 1986; Muzzio, Swanson &
Ottino 1991; Ottino et al. 1994), the ‘rotor-oscillator flow’ (Hackborn, Ulucakli &
Yuster 1997) and the ‘annular wedged cavity’ (Krasnopolskaya et al. 1998). Note
that Muzzio et al. (1991) follow a statistical rather than the customary topological
course. Extensive examination of two-dimensional chaotic advection provided a fairly
complete picture, leading to the well-known ‘fingerprints of chaos’ (see e.g. Ottino
et al. 1994) as indicators of efficient mixing.

Three-dimensional tracer advection, on the other hand, remains a largely unexplored
field thus far. Departure from the two-dimensional case has essentially two aspects:
first, three-dimensional spaces are of much higher topological complexity than two-
dimensional spaces (see Croom 1978), manifesting itself in richer tracer dynamics; and,
second, the three-dimensional Lagrangian equations of motion lack the well-defined
Hamiltonian structure of their two-dimensional counterpart, hampering a universal
approach similar to the two-dimensional case. (Note that an exception to the latter
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is three-dimensional steady systems, which, under certain conditions, coincide with
time-dependent two-dimensional Hamiltonian systems; see Bajer (1994).) A generic
three-dimensional theoretical framework is proposed in Feingold, Kadanoff & Piro
(1987), resting on an extension of the concept of action-angle variables known from
Hamiltonian mechanics (see Ott 2002) – an essentially topological approach; actions
define constants of motion to whose iso-surfaces tracer motion is restricted – to generic
three-dimensional dynamical systems (consult Cartwright, Feingold & Piro 1996,
for an overview). Further studies involving Hamiltonian concepts are presented in
Cheng & Sun (1990), Beigie, Leonard & Wiggins (1994), MacKay (1994) and Mezić &
Wiggins (1994). Investigations thus far have exposed several key mechanisms of three-
dimensional tracer advection. A well-known feature of three-dimensional systems is
e.g. the possibility of chaotic dynamics under steady flow conditions. Examples of
such systems are found in Arnol’d (1965), Dombre et al. (1986) (the classical ABC
flow) and, more recently, in Bajer & Moffatt (1990) and Bajer (1994). The latter tie
a phenomenon termed ‘trans-adiabatic drifting’ to the chaotic behaviour. Note that
in time-periodic systems a similar mechanism exists in ‘resonance-induced dispersion’
(see Cartwright et al. 1996). An important theoretical achievement is the three-
dimensional analogy to the famous KAM theorem (see Cheng & Sun 1990; Mezić &
Wiggins 1994). Numerical studies on (various aspects of) three-dimensional tracer
advection are discussed in Ottino (1989), Kusch & Ottino (1992), Ottino et al. (1992),
Anderson et al. (1999), Meleshko et al. (1999), Shankar & Deshpande (2000) and
Kruijt et al. (2001).

Experimental studies on three-dimensional tracer advection are scarce and mainly
restricted to the work highlighted below. Seminal work is found in Kusch & Ottino
(1992) and Ottino et al. (1992), an experimental examination of the partitioned-pipe
mixer and eccentric helical annular mixer (prototypical flows introduced in Ottino
1989) by means of flow visualization with fluorescent dye. Chaotic advection in the
time-periodic flow in a three-dimensional cylinder, driven by alternate activation of
eccentrically rotating endwalls, is investigated in Miles, Nagarajan & Zumbrunnen
(1995) via two-dimensional particle tracking velocimetry (PTV) applied to projections
of a single three-dimensional tracer path. Laboratory experiments on a steady
impeller-driven flow in a cylindrical vessel are described by Fountain, Khakhar &
Ottino (1998) and Fountain et al. (2000), involving in-plane velocity measurements
(PTV) and flow visualization (fluorescent dye).

The present analysis concerns three-dimensional tracer advection by non-inertial
flows in the cylindrical configuration introduced in Malyuga et al. (2002) and
elaborates on their work in a threefold manner. First, the case-specific symmetry-
based analysis of the flow topology in Malyuga et al. (2002) is reconciled with generic
symmetry concepts. This is demonstrated by reconsidering several cases examined
in cited work. Second, the study on tracer transport, in Malyuga et al. (2002)
restricted to individual tracers, is extended to finite-size material objects. Third,
several key aspects of flow and tracer dynamics have been subjected to experimental
validation.

The paper is organized as follows. Section 2 provides the problem definition. The
theoretical framework for the topological approach is outlined in § 3. Laboratory
set-up and data-acquisition techniques are presented in § 4. Section 5 contains the
numerical flow-topology analysis based on generic symmetry concepts; § 6 contains
the numerical study on the transport properties. The laboratory experiments are
discussed in § 7. Summary and conclusions are then given in § 8.
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Figure 1. (a) Non-dimensional problem definition and (b) basic forcing steps.

2. Problem definition
2.1. Tracer kinematics

The motion of passive tracers is governed by the three-dimensional kinematic vector
equation

dx
dt

= u(x, t), x(0) = x0, (2.1)

describing the temporal evolution of the positions x of tracers released at the position
x0 in the flow field u(x, t). The general solution to (2.1), defining a dynamical system,
is x(t) = Φ t (x0) and uniquely determines the current position x for given initial tracer
position x0. The continuous orbit X t (x0) = Φ t ′(x0), with t ′ =[0, t], coincides with the
Lagrangian trajectory followed by the tracer while propagating from x0 to x.

Throughout this paper either steady or time-periodic systems will be considered.
For steady systems u = u(x) and in consequence the tracer paths coincide with the
streamlines of the flow. For time-periodic systems u(x, t) = u(x, t + T ), with T the glo-
bal period, allowing for a reduction of the continuous flow x(t) = Φ t (x0) into the
discrete mapping ΦT . The sequence XT (x0) = [x0, x1, x2, . . .] contains the subsequent
tracer positions at the discrete time levels t =[0, T , 2T , . . .] and forms the temporal
Poincaré section of the tracer trajectory X t (x0). The present work concerns only n-step
time-periodic systems of the form ΦT = Fn Fn−1 . . . F1. The steps Fi form piecewise
steady forcing stages with time span T/n, during which one endwall performs a steady
translation in a prescribed direction.

2.2. Flow model

Restriction to fully non-inertial flows means the fluid motion within each forcing step
Fi that is described by the non-dimensional steady Stokes equations

∇p = ∇2u, ∇ · u = 0, (2.2)

in the non-dimensional cylinder D : [r, θ, z] = [0, 1] × [0, 2π] × [−D1/2, D1/2], with
D1 = H/R the aspect ratio of the physical cylinder with radius R and height H . The
flow problem is characterized by the non-dimensional parameters D1 and D2 = UT /

(nR), representing the dimensionless displacement of an endwall during steady forcing
(n= 1) or one stage of the n-step time-periodic forcing (n> 1). Figure 1(a) provides a
schematic of the non-dimensional problem definition. Here the aspect ratio remains
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fixed at D1 = 2, implying that the system is determined entirely by D2 and the specific
forcing protocol.

The relevant time scales are given by the advection time scale Ta = R/U and the
forcing time T , related by T/Ta = nD2. The former defines the principal time scale
for the tracer dynamics; the dimensionless time t/Ta is therefore forcing-independent
and thus facilitates direct comparison of different flow configurations.

2.3. Flow configurations

In the following, the forcing steps Fi are one of (F+x
B , F−x

T , F+y
B ), with the subscripts

referring to the top (T ) and bottom (B) endwall and the superscripts indicating the
translation direction (see figure 1b). Geometrical symmetries and stepwise-steady flow
imply the basic forcings (and underlying velocity fields) are related via F+y

B = Sπ/2(F+x
B )

and F−x
T = SxSz(F+x

B ), with the operators Sπ/2, Sx and Sz accomplishing π/2 rotation
about the z-axis and reflection about the plane x = 0 and z = 0, respectively. This
suggests the forcing protocols can all be expressed in terms of F+x

B , suggesting this
as the fundamental building block of the configurations considered hereafter. For
forcing F+x

B a semi-analytical solution to (2.2) is presented in Shankar (1997) and
Meleshko, Malyuga & Gomilko (2000).

This paper considers four forcing protocols, namely

ΦS
t = F+x

B , ΦA
T = F+y

B F+x
B , ΦB

T = F−x
T F+x

B , ΦC
T = F+y

B F−x
T F+x

B , (2.3)

comprising one steady protocol (ΦS
t ) and three time-periodic protocols (ΦA,B,C

T ). Note
that these readily connect with the configurations studied in Malyuga et al. (2002)
upon exchanging top and bottom walls in (2.3).

3. Theoretical setting: the concept of flow topology
3.1. Coherent structures

The flow topology is formed by the collection of coherent structures embedded in the
web of tracer paths. The flow topology imposes geometrical constraints on the tracer
motion and thus dictates the advection characteristics of a given flow. For both steady
and time-periodic systems three categories of coherent structures can be envisioned:
(i) periodic points and lines; (ii) invariant manifolds attached to periodic points and
lines; (iii) generic closed invariant manifolds (see e.g. Guckenheimer & Holmes 1983;
Feingold et al. 1988). Note that stagnation points and lines readily qualify as periodic
points and lines.

Coherent structures are, notwithstanding the chaotic – and thus inherently unpre-
dictable – nature of individual tracers, structurally stable and thereby robustly
detectable in chaotic systems. The flow topology represents the ‘order within disorder’
and its identification therefore forms the key to understanding of chaotic advection
in fluid-dynamical systems.

Brouwer’s fixed-point theorem states that any continuous mapping of a convex
space† onto itself has at least one fixed (or periodic) point (see Brouwer 1911). This
fundamental property projects periodic points and associated invariant manifolds

† A space is termed convex if for any pair of points within the space, any point on the line
joining them is also within the space. The present cylindrical domain is such a convex space.
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as the most essential entities in the flow topology.† Periodic points and lines fall
within one of the following categories: node-type and focus-type periodic points
and elliptic, hyperbolic and parabolic periodic lines (see Malyuga et al. 2002). In
steady systems, periodic points describe closed streamlines on which any constituent
point is periodic; such closed streamlines thus form uniform-type (i.e. fully elliptic,
hyperbolic or parabolic) periodic lines (see Ott 2002). Time-periodic systems allow for
periodic lines with elliptic and hyperbolic segments (see Malyuga et al. 2002). Note
that for steady systems an alternative classification for stagnation points is found in
Chong, Perry & Cantwell (1990), which can be shown to connect consistently with
the classification of Malyuga et al. (2002).

Several coherent structures associated with periodic points and lines can be dis-
tinguished. Isolated periodic points and hyperbolic elliptic lines imply pairs of stable
(WS) and unstable (WU ) manifolds, arising as surface–curve pairs (WS,U

2D ,WU,S
1D ) for

points and as surface–surface pairs (WS,U
2D , WU,S

2D ) for lines. The manifolds can,
depending on their interaction, either obstruct or promote chaotic tracer transport.
Elliptic lines form the centre of families of so-called elliptic tubes that seal off the
enclosed region and thus act as transport barriers. Parabolic lines are devoid of
associated coherent structures and indicate (inherently non-chaotic) shear flow.

The nature of the tracer dynamics is intimately related to the manifold interaction
Ws − Wu. Two kinds of interaction scenarios can be distinguished: (i) homoclinic
(Ws,Wu belong to one point/line) or heteroclinic (Ws,Wu belong to different points/
lines) interaction; (ii) smooth connection or transversal intersecting of stable with un-
stable manifolds. Hetero/homoclinic smooth connections imply closed orbits and thus
non-chaotic tracer dynamics. Hetero/homoclinic transversal manifold interaction, on
the other hand, forms one of the established ‘fingerprints of chaos’ (see Ottino et al.
1994).

In steady systems the manifolds coincide with streamlines and stream surfaces, sug-
gesting that W1D − W2D intersections are identified with stagnation points and thus
are disqualified as legitimate transversal interaction. In consequence, transversal
interaction is possible only between two-dimensional manifolds, namely as heteroclinic
point–point, heteroclinic point–line, homoclinic line–line and heteroclinic line–line
interaction (see Abraham & Shaw 1982). In time-periodic systems such restrictions are
absent and, hence, virtually boundless combinations are conceivable, leaving manifold
dynamics in three-dimensional time-periodic flows an area largely unexplored so
far.‡ Note that periodic lines suggest (locally) two-dimensional tracer dynamics (see
Malyuga et al. 2002).

3.2. Symmetries

Symmetries in the flow field manifest themselves as symmetries in the tracer trajectories
and can thereby facilitate identification of coherent structures. For the purpose of
this study a brief overview, largely based on the work presented in Franjione et al.
(1989) and Ottino et al. (1992), is given below.

In the present framework two kinds of symmetries are of interest, namely

Φτ = SΦτ S
−1, Φτ = SΦ−1

τ S−1, (3.1)

† “What makes periodic solutions so valuable is that they offer the only opening through which
we might try to penetrate the fortress which has the reputation of being impregnable”, according
to Poincaré (1892).

‡ Transversal Ws
1D − Wu

1D interaction is unlikely, however, following the transversality theorem
(see Guckenheimer & Holmes 1983).
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with τ = t and τ = T for steady and time-periodic systems, respectively, reflecting
ordinary and time-reversal symmetry, respectively, in the flow Φτ about the fixed
manifold of symmetry IS (given by S(IS) = IS). For time-periodic systems ΦT =
Fn Fn−1 . . . F1 a second class of symmetries exists:

Fi = SFjS
−1, Fi = SF−1

j S−1, (3.2)

reflecting symmetries between the individual stages of the forcing sequence. Note
that for i = j relation (3.2) denotes self-symmetry within one single step Fi . For the
present multistep systems, global symmetries (3.1) are derived directly from (3.2).
Furthermore, a distinction must be made between reflectional and non-reflectional
symmetries on the following topological grounds. For the former, IS defines the surface
of reflection, which physically divides the domain – and thereby flow topology –
into two inter-related sections. For the latter, IS is identified with either a curve or
a single point and in consequence such spatial subdivision is absent. Note that for
reflectional symmetries S2 = I and thus S−1 = S.

Application of property (3.1) to coherent structures L gives Φ±1
τ S(L) = S(L) and

implies that they emerge as pairs [L, S(L)]. Introducing LI to denote (segments of)
coherent structures located on IS then gives

[LI , L, S(L)], (3.3)

as the fundamental arrangement of coherent structures in symmetric systems, suggest-
ing the flow topology is determined entirely by [LI , L]. The immediate implication
for systems with (time-reversal) reflectional symmetries is that scanning of only one
of the two subdomains separated by IS is sufficient to identify [LI , L]. (Note that
an equivalent reduction is lacking for non-reflectional symmetries; clearly defined
subdomains are absent in that case.) Further universal manifestations of (reflectional)
symmetries are given below.

For ordinary reflectional symmetries, IS is impenetrable and thus acts as a ‘virtual
wall’, physically separating the flows on each side. In the case of time-reversal reflec-
tional symmetry, periodic structures on IS (denoted PI ) are defined by intersections

PI = IS ∩ Φτ (IS), (3.4)

with IS the material surface released at IS . Because IS and Φτ (IS) are both surfaces,
the intersection PI defines invariant curves, for steady and time-periodic flows cor-
responding to stagnation and period-k lines, respectively. Bounded systems with
the symmetry mentioned above invariably accommodate such lines (see Speetjens
2001). The time-reversibility underlying S relates the members of the manifold pair
(Wu

2D, Ws
2D) of hyperbolic (segments of) PI via Ws

2D = S(Wu
2D); for periodic structures

P off IS , by virtue of (3.3) emerging in pairs [P, S(P )], one arrives in a similar manner
at Wu,s

P = S(Ws,u
S(P )).

For systems encompassing two time-reversal reflectional symmetries (termed
‘double-symmetric’), i.e. S1 and S2, one symmetry, say S2, forms a conjugate pair
(S2, S

′
2), with S ′

2 = S1S2S1 and I ′
2 = S1(I2). Period-1 lines P are given in such systems by

the intersections of the conjugate surfaces, P = I2 ∩ I′
2 (see Ottino et al. (1994) for

the two-dimensional counterpart), or, in terms of (3.3), by P =[P1, P2, S1(P2)], with
P1,2 conforming to (3.4) for τ = T . Manifold pairs, if present, satisfy Ws

P1
= S1(W

u
P1

),
Ws

P2
= S2(W

u
P2

) and Wu,s

P ′
2

= S1(W
s,u
P2

), with P ′
2 = S1(P2).

Furthermore, flow configurations generally allow for case-specific symmetry ex-
ploitation, including any symmetry disclosed for a given problem. An instructive
example on this is found in the tailor-made search algorithm for periodic points in
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Figure 2. Schematic of the laboratory set-up. The solid and dashed squares in (a) reflect the
maximum horizontal/vertical displacement (distance Dmax) of either endwall.

the classical two-dimensional lid-driven cavity, as presented in Meleshko & Peters
(1996).

4. Experimental techniques
4.1. Apparatus

The laboratory set-up consists of a container filled with silicon oil (type AK2000 by
Wacker-Chemie GMBH, Munich, Germany) into which the cylinder is submerged;
the endwalls are mounted on support structures and lowered into the fluid. In-plane
motion of the endwalls is accomplished via a computer-controlled motion-control
system by which both the displacement D � Dmax (the upper bound results from
the finite-size endwalls) and velocity U � Umax are set and monitored, permitting
optimal reproducibility of the forcing conditions. Container, cylinder and endwalls are
fabricated of translucent Perspex for maximum optical accessibility. (Note that Dmax

permits long-term experiments only for forcing protocols with net zero-displacement
during one period.) A schematic of the apparatus, with specifications H = 70mm,
R = 35mm, εH = 1mm, ν = 2000 mm2 s−1, Dmax =210 mm and Umax = 20 mm s−1, is
given in figure 2. (Note that the cylinder has for practical reasons been put on its
side in the laboratory set-up.) The relative gap between endwalls and cylinder is
εH/H = 1/70 � 1 and is considered negligible. The aspect ratio and maximum non-
dimensional displacement are D1 = 2 and D2,max = 6, respectively. In this paper, U is
set such that Re =UR/ν = 0.06, which allows neglect of inertial effects, implying the
laboratory conditions are consistent with the problem definition of § 2.

4.2. Flow visualization and flow measurement

Material volumes (‘blobs’) are labelled via injection of dyed silicon oil (dye stuffs:
Sudan Blau II and Sudan Orange 183 by BASF AG, Ludwigshafen, Germany) for
visualization of the tracer transport. The blobs are photographed at subsequent stages
in the forcing cycle for qualitative comparison with numerical predictions. Laboratory
observations determined the dye–oil solution to be inert and fully miscible and mass
diffusion proved insignificant within the typical time span of an experiment (Schmidt
number Sc= ν/κ ∼ O(1500)), thus meaning that the blobs qualify as passive tracers.
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Quantitative data on velocity field and tracer paths are obtained by means of
particle tracking velocimetry (PTV). The method in essence comprises an image-
processing algorithm by which the quantities are deduced from video recordings of
the time evolution of minute particles seeded in the fluid. Prior to measuring sessions,
a three-dimensional reference grid is recorded, enabling data-translation from pixel
to physical coordinates. In the three-dimensional case the imagery is procured via
a three-camera configuration with non-coinciding viewpoints (see Kieft et al. 2002;
Schreel, van der Plas & Kieft (2000)).

High-resolution cameras (1018 × 1019 pixels 10-bit camera model ES 1.0 by Roper
Scientific, San Diego, USA) were positioned in a triangular arrangement facing the
bottom endwall at an angle α � 9◦ with the cylinder axis, a trade-off between optimal
performance (α � 20◦, see Kieft et al. 2002) and maximum optical accessibility (α → 0◦).
Transformation of the measured velocity field from the set of N unstructured measur-
ing points x to a structured grid ε is established via the kernel-based interpolation
scheme u(ε, t) =

∑N

i G(xi − ε, σ )u(xi , t)/
∑N

i G(xi − ε, σ ), with G(x, σ ) = G(x, σ )
G(y, σ )G(z, σ ) and G(x, σ ) the well-known Gaussian function. An optimum window
size σ is found to be σ = 1.24δ/

√
2 ≈ 0.88δ, with δ = 3

√
3V/4π N the mean particle

separation in the three-dimensional domain of volume V = πHR2 and N as before,
based on the procedure proposed in Agüi & Jiménez (1987).

5. Numerical analysis: flow topology
5.1. Steady flow

The semi-analytical solution of (2.2) under the steady forcing in (2.3) is of the form

ur (x) = ur (r, z) cos θ, uθ (x) = uθ (r, z) sin θ, uz(x) = uz(r, z) cos θ, (5.1)

defining a flow field with streamlines X t (x0) symmetric about the plane y = 0 and
self-symmetric about x = 0 (see Meleshko et al. 2000). In terms of the symmetry
operators introduced in § 3.2, the flow satisfies

Φ t = SyΦ tSy, Φ t = SxΦ
−1
t Sx, (5.2)

signifying an ordinary (Sy) and time-reversal (Sx) reflectional symmetry about the
planes y = 0 (Iy) and x = 0 (Ix), respectively. According to § 3.2, properties (5.2) dictate
that coherent structures are symmetric about both Ix and Iy . Moreover, the presence of
Sx implies a stagnation line in the plane Ix . This agrees with Shankar (1997), in which
an elliptic stagnation line is reported in Ix and symmetric about Iy . Moreover, two
isolated focus-type stagnation points are found, located in Iy near the upper-right and
upper-left corners and symmetrically arranged about Ix , exhibiting heteroclinic point-
point interaction via the smooth connections Ws

1D − Wu
1D and Ws

2D − Wu
2D . The tracer

paths outside the interacting manifolds invariably consist of closed streamlines –
following § 3.1 identified with periodic lines – centred on the stagnation line. The
presence of a dense set of such periodic lines implies that they are parabolic, in turn
implying shear-like fluid flow – and thus non-chaotic tracer dynamics.

Closed streamlines suggest the existence of two constants of motion F (x), which
are governed by u · ∇F =0 and, consistent with (5.1), can be shown to be of the form

F1(x) = f1(r, z), F2(x) = f2(r, z) sin θ, (5.3)

where an analytical expression for F1 is provided in Malyuga et al. (2002). Tracers
released at x0 adhere to pairs of level surfaces F1,2(x0) = F1,2(x), meaning that
streamlines are defined by intersections of level surfaces of F1,2 (see Bajer 1994).
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(a) (b)
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Figure 3. Coherent structures in the steady flow: concentric level surfaces of F1 (closed
surfaces in a) inside the separatrix F ′

1 (surface ending on top wall in a); ‘primary-eddy region’
consisting of elliptic stagnation line (dotted curve) and encircling parabolic lines (b).

The anti-symmetry of F2 about Iy means that the level surface F2 = 0 coincides with
Iy; the intersections of F2 = 0 with the level surfaces of F1 then define the streamline
portrait in Iy . Conversely, the latter implies that the axi-symmetric level surfaces of
F1 are identified with the surfaces of revolution of the streamlines in Iy . This, in
turn, means that the projection of arbitrary three-dimensional streamlines onto the
(r, z)-plane coincides with the streamline pattern in Iy .

An important ramification of the above is that it, in the present context, nullifies
the effect of the foci upon the tracer dynamics. In Iy the zone of influence of the foci
sits between a separation streamline ending on the top wall and the boundary (see
Shankar 1997); in three-dimensions this separation streamline, by virtue of the above
symmetry property, corresponds to an axi-symmetric separatrix F ′

1 within which the
level surfaces of F1 constitute a family of concentric sphere-like objects (see figure 3a).
The region outside this separatrix – defining the three-dimensional zone of influence
of the foci – forms but a thin boundary layer in which fluid motion is negligible
relative to the interior of F ′

1. This suggests that the foci are insignificant for the
advection characteristics and thus leaves the stagnation line and encircling parabolic
lines (merging into the family of elliptic tubes that defines the ‘primary-eddy region’
in Shankar 1997) as relevant coherent structures (see figure 3b). The level surfaces of
F2 (not shown) define a family of parallel vertical surfaces symmetrically arranged
about Iy .

5.2. Time-periodic flows

5.2.1. Forcing protocol A

The symmetries of the steps in forcing protocol A derive from (5.2) and collapse
onto

F1 = Sy F1Sy, F1 = Sx F−1
1 Sx, F2 = Sx F2Sx, F2 = Sy F−1

2 Sy,

F1 = S1 F2S1, F1 = S2 F−1
2 S2, F2 = S1 F1S1, F2 = S2 F−1

1 S2,

}
(5.4)

with S1 : (x, y, z)→ (y, x, z) and S2 : (x, y, z) → (−y, −x, z) establishing reflection about
the planes y = x and y = −x, respectively, and Sx,y as defined before. The symmetries
are related through Sx = S1SyS1 and S2 = SyS1Sy , meaning that the system accom-
modates only two independent symmetries, namely Sy and S1. Symmetries (5.4)
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Figure 4. Period-1 line in the plane y = −x (a; viewed in the negative x-direction) and
manifold pair (Ws

2D,Wu
2D) (b; viewed from above) for protocol A at D2 = 5.

become via F2 F1 = S2 F−1
1 S2 S2 F−1

2 S2 = S2(F2 F1)
−1S2 the time-reversal reflectional

symmetry S2, with the plane y = −x as fixed manifold of symmetry I2. Moreover,
an ordinary non-reflectional symmetry is found through F2 F1 = S1 F1S1S1 F2S1 =

S1 F1 F2 F1 F−1
1 S1 = S̃(F2 F1)S̃

−1, with S̃ = S1 F1 and S̃2 = F2 F1 = ΦA
T . The independent

symmetries Sy and S1 in (5.4) thus translate into the global symmetry relations

ΦT = S2Φ
−1
T S2, ΦT = S̃ΦT S̃, (5.5)

with S2 and S̃ as before.
Symmetry S2 implies, first, that scanning of either side of I2 suffices for full identi-

fication of the flow topology and, second, that I2 hosts a period-1 line given by
relation (3.4). Figure 4(a) displays the period-1 line for D2 = 5, viewing the plane I2

in the negative x-direction, where thick and thin lines indicate elliptic and hyper-
bolic segments, respectively. The period-1 line meets L = S̃(L) and intersects with the
cylinder axis (p3 in panel a) at the stagnation point x0 =Lx ∩ Ly , with Lx and Ly =

Sπ/2(Lx) the stagnation lines associated with F+x
B (see figure 3) and F+y

B , respectively.
The coincidence of the stagnation point – which sits at the same position for any
D2 – with the period-1 line reflects the analogy between the stagnation point and
period-1 points indicated in § 3.1. Period-1 points and lines outside I2 are non-existent
(see Malyuga et al. 2002).

The part of the two-dimensional unstable manifold Wu
2D connected to the segment

[p1, p2] of the period-1 line is identified with the technique described in Malyuga
et al. (2002). Following § 3.2, the time-reversal reflectional symmetry S2 implies Ws

2D =
S2(W

u
2D), meaning that isolation of the unstable manifold Wu

2D is sufficient for finding
the manifold pair (Wu

2D, Ws
2D). Figure 4(b) shows a portion of the latter as seen from

above (manifolds are infinitely long; thus here only part of them is displayed). The
intersection Ws

2D ∩ Wu
2D in I2 corresponds to the segment [p1, p2] of the period-1 line;

the intersections off I2 define transverse homoclinic intersections and thereby suggest
chaotic dynamics, albeit of an essentially two-dimensional nature.

The previous constant of motion F1 is, due to its axisymmetry, invariant under
changes in bottom-wall translation direction, meaning that F1 is preserved for protocol
A. This restricts tracers to effectively two-dimensional motion on the corresponding
level surfaces shown in figure 3(a) and suggests that the above period-1 line consists
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Figure 5. Flow topology for protocol B at D2 = 5. (a) Period-1 lines, (b) manifold pair.

of period-1 points each associated with a given level surface of F1. The invariable
existence of these period-1 points – and thus the period-1 line – follows from Brouwer’s
fixed-point theorem (see § 3.1).† This property extends to any time-periodic forcing
protocol involving only one endwall and implies that this flow class always hosts at
least one period-1 line.

5.2.2. Forcing protocol B

The symmetry properties for protocol B follow from (5.2) and are

F1,2 = Sx F−1
1,2Sx, F1 = Sz F−1

2 Sz, F2 = Sz F−1
1 Sz, F1,2 = Sy F1,2Sy, (5.6)

with Sx,y,z as before. Time-reversal reflectional symmetry is identified through F2 F1 =

(Sz F−1
1 Sz)(Sz F−1

2 Sz) = Sz(F2 F1)
−1Sz with Iz the plane z =0. The self-symmetry Sx co-

exists with a second time-reversal reflectional symmetry S2, following from F2 F1 =
(Sx F−1

2 Sx)(Sx F−1
1 Sx) = (Sx F1)F−1

1 F−1
2 (F−1

1 Sx) = S2(F2 F1)
−1S2, with S2 = Sx F1 = S−1

2

and I2 = F−1/2
1 (Ix) and conjugates S ′

2 = SzS2Sz and I ′
2 = Sz(I2). This makes protocol B

a double-symmetric system, in which period-1 lines are determined entirely by the
intersections P = I2 ∩ I′

2 (see § 3.2). Furthermore, an ordinary reflectional symmetry
is found in ΦT = SyΦT Sy .

Figure 5(a) displays the period-1 lines for D2 = 5, comprising one hyperbolic line
sitting in Iz and two elliptic lines symmetrically arranged about Iz. The part of the
manifold pair (Ws

2D, Wu
2D) attached to the segment [p1, p2] of the hyperbolic line is

displayed in figure 5(b). The stable and unstable manifold are related via Ws
2D =

Sz(W
u
2D) and are symmetric about y =0. Transversal homoclinic interaction occurs

between the two-dimensional manifolds, similar to protocol A, signifying two-
dimensional chaotic tracer dynamics. Note that the essentially two-dimensional nature
of flows with periodic lines is particularly apparent for protocol B . Both uniform-
type periodic lines and the nearly absent lateral stretching of the manifolds are
manifestations of this characteristic.

† The essential premise of convexity is fulfilled by the level surfaces of F1.
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Figure 6. Protocol C: manifolds of lower periodic point (D2 = 5). (a) Wu
2D , (b) Ws

1D .

5.2.3. Forcing protocol C

Protocol C encompasses three steps, relating to protocols A and B via FC
1 =

FA
1 = FB

1 , FC
2 = FB

2 and FC
3 = FA

2 , with the superscripts indicating the protocol in
question. Symmetry analysis, taking into account properties (5.4) and (5.6), reveals
protocol C to be devoid of global symmetries such as those found for protocols A

and B . Periodic structures for protocol C are therefore isolated with the case-specific
symmetry-based search algorithm proposed in Malyuga et al. (2002).

Two isolated node-type periodic points are found for D2 = 5, one near the origin and
one near the bottom wall, with associated manifold pairs (Wu

2D, Ws
1D). Stretching rates

are roughly five times as high for the latter periodic point compared to the former,
however (see Malyuga et al. 2002), implying that the global advection properties
are governed primarily by the periodic point near the bottom wall. The discussion
hereafter therefore concentrates on the latter. Figure 6(a) shows Wu

2D corresponding to
that point, the filament-like shape of which signifies a dominant stretching direction
within Wu

2D . This is consistent with the intraplanar stretching-rate ratio |λI /λII| =3.9,
with λI,II the stretching rates along the two principal deformation axes in Wu

2D , which
significantly differs from unity (see Malyuga et al. 2002). The one-dimensional stable
manifold Ws

1D is depicted in figure 6(b), with the star indicating the location of the
periodic point.

The part of the flow topology decisive for the tracer transport thus consists of the
entities displayed in figure 6. Its intricate and essentially three-dimensional extent sets
the topology of protocol C apart from the effectively two-dimensional flow topologies
of protocols A and B , reflecting the fundamental difference between systems with
periodic lines and systems with isolated periodic points. Furthermore, for the former,
transversal manifold interaction is a necessary condition for chaotic dynamics and
as such serves as the well-established ‘fingerprint of chaos’. For protocol C, on
the other hand, three-dimensional chaotic advection is observed without finding
manifold interaction of any kind, suggesting that in three-dimensional systems the
mere existence of isolated periodic points is a sufficient indicator of three-dimensional
chaos. Note that smooth connection can be ruled out on grounds of the properties of
the manifold pairs: here one finds (Wu

2D, Ws
1D) for both periodic points; the interaction

mentioned, on the other hand, requires (Wu
2D, Ws

1D) for one point and (Wu
1D, Ws

2D) for
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Figure 7. Long-term tracer dispersion for the time-periodic forcing protocols (D2 = 5).
Protocols A,B and protocol C are tracked for 10 000 and 6667 periods, respectively, and
cover a total time span ttot/Ta =1 × 105. (a) Protocol A, (b) B , (c) C.

the other in order to form smooth connections Wu
2D − Ws

2D and Wu
1D − Ws

1D . Whether
or not this automatically implies transversal interaction, as in the periodic-line case,
remains to be seen, however.

6. Numerical analysis: advection characteristics
The link between flow topology and tracer transport is investigated by determining

the advection characteristics of individual tracers and finite-size material objects
(surfaces and volumes), released at strategic locations in the flow. Both approaches
are complementary in that monitoring of tracers and objects provides insight into
the long-term and short-term behaviour, respectively, of a given system. Both tracers
and objects are examined in terms of Poincaré sections (see § 2.1); for objects their
interface with the ambient fluid is tracked with the algorithm proposed in Malyuga
et al. (2002).

6.1. Individual tracers

In the steady-forcing case tracers migrate on the closed streamlines displayed in
figure 3 and, hence, Poincaré sections XT (x0) of individual tracers coincide with
one such streamline. Advection is restricted by two constants of motion, implying
effectively one-dimensional motion and thus inherently non-chaotic tracer dynamics.

For protocols A and B one tracer is released on Wu
2D at a minute distance from the

periodic line; for protocol C the same is done for the dominant stretching direction
in Wu

2D . Protocols A, B and protocol C are tracked for 10 000 and 6667 periods res-
pectively with D2 = 5 and thus cover a time span ttot/Ta = 1 × 105. Figure 7(a) displays
the Poincaré section for protocol A and reveals essentially two-dimensional motion in
that the tracer, though wandering chaotically, is confined to one level surface of F1.
For protocol B similar behaviour is found in that tracers are restricted to thin layers
of approximately constant y, hosting quasi-two-dimensional chaotic dynamics (see
figure 7b). Note that the white patches in the cloud of subsequent tracer positions in
figure 7(b) indicate the location of the tubes centred on the elliptic lines. Essentially
three-dimensional chaotic advection is found only for protocol C, for which one
tracer visits the entire flow domain (see figure 7c), signifying that transport barriers
are non-existent.
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Figure 8. Advection of a material surface (thick line) in the steady flow (T/Ta = 10).
(a) t = 0, (b) t = T , (c) t = 4T .

6.2. Finite-size material objects

For the steady forcing case, the dynamics of finite-size material objects are examined in
terms of the discrete mapping ΦS

T deriving from ΦS
t , with T the period of protocols A

and B . Tracer motion is confined to closed streamlines in level surfaces of F2 and,
therefore, concentrating on one such level surface, say F2 = 0 (plane y = 0), provides
sufficient information on the global advection characteristics. In the mapping, the
elliptic stagnation line then emerges as an elliptic period-1 point – with associated
island defined by the encircling closed streamlines (see figure 3b) – in the plane y = 0.
Moreover, the points p2,4 in figure 4(a) can be shown to share one closed streamline,
in the mapping materializing as a parabolic period-1 line in the plane y =0.

Figure 8 shows the temporal evolution of the interface (thick line) of a material disk
with radius r/R =0.1 released on p4 (lower star on the z-axis). The thin solid lines
represent the orbits in the elliptic island of p3 (upper star on the z-axis), along which
the poles of the initially circular interface travel. The dotted line delineates the closed
trajectory pursued by p4 in the course of one period. The time-sequence exposes the
shear-like deformation of the disk, akin to that of a two-dimensional shear flow, in the
annular flow confined by the thin solid lines. This is typical of the advection in any
annulus defined by any two closed streamlines in any level surface of F2 and thereupon
advances the steady flow as essentially equivalent to two-dimensional shear flow.

For the time-periodic protocols the advection of material spheres with radius
r/R = 0.1 is investigated for D2 = 5. For protocol A blobs are placed on the cylinder
axis at positions p3 and p4 in figure 4(a), corresponding to an elliptic and hyperbolic
point, respectively, on the periodic line. The evolution of the blobs is shown in figure 9
and reveals dramatic differences in the response of the two objects, despite their
initial proximity, to the imposed forcing. The blob on p3 (elliptic) remains practically
undeformed; the blob on p4 (hyperbolic), in sharp contrast, deforms substantially and
gradually wraps itself about the other blob in the course of time. These phenomena
can be reconciled with the flow topology of protocol A in that the blob on p3 is
trapped in the elliptic tube centred on the elliptic segment of the periodic line, whereas
the blob on p4 collapses on the unstable manifold Wu

2D of the hyperbolic segment of
the periodic line (enveloping the mentioned tube) as time progresses. This is in accord
with the notion that unstable manifolds in conservative (∇ · u =0) flows are analogous
to attractors in dissipative (∇ · u < 0) flows (see Beigie et al. 1994). Furthermore, the
constant of motion F1 restricts the freedom of movement of the blob on p4 to
the three-dimensional annulus bounded by the level surfaces of F1 associated with
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Figure 9. Advection of material volumes for forcing protocol A (D2 = 5). (a) t =0,
(b) t = T , (c) t = 2T .
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Figure 10. Advection of material volumes for forcing protocol B (D2 = 5). (a) t =0, (b) t = T .

the poles of the initially spherical blob (projected in the (r, z)-plane coinciding with
annulus and disk in figure 8). This geometrical confinement is particularly apparent
in figure 9(c).

For protocol B blobs have been released at p2 (hyperbolic) and p3 (elliptic) in
figure 5(a). The evolution is shown in figure 10 and reveals characteristics similar to
those found for protocol A: collapsing of the blob on p2 onto Wu

2D and entrapment
of the blob on p3 in the elliptic tube. Its uniform-type periodic lines and negligible
lateral motion allow protocol B to demonstrate this manifold-tube interplay, typical of
systems with periodic lines, in an insightful manner. Note that the high stretching rate
of protocol B causes the blob on p2 to almost merge with Wu

2D within just one period.
Because of its symmetry Sy , implying planar motion in y =0, protocol B lends itself

perfectly to illustrating the link between manifolds and tracer transport. Figure 11
shows the evolution of a circular interface (r/R = 0.1) released at an arbitrary location
in y = 0 in the region occupied by the manifolds, revealing that the interface progres-
sively aligns with the unstable manifold as time proceeds. This alignment is found
for any such interface placed in this region and thus exposes the manifold as a ‘defor-
mation template’ into which arbitrarily placed material objects are asymptotically
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Figure 11. Advection of material disk (heavy curve) in plane of symmetry y =0 for forcing
protocol B (D2 = 5). The solid and dotted curve represents the unstable and stable manifold,
respectively, associated with the periodic point on the hyperbolic line sitting in y = 0 (dot). (a)
t =0, (b) t =3T , (c) t = 4T .
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Figure 12. Advection of material volumes for forcing protocol C (D2 = 5). (a) t = 0, (b) t = T .

shaped as time progresses. This arbitrariness conversely suggests that the advection
characteristics connected with a given hyperbolic point/line can be inferred from those
of one given object. Similar considerations hold for the transport properties in elliptic
tubes and thus suggest that monitoring strategically placed objects, i.e. one object at
an arbitrary location (most naturally – but not necessarily – the periodic line/point
in question) in each elliptic and hyperbolic region, is sufficient to determine the global
transport properties of a given flow, thereby justifying the approach adopted here.

Figure 12 shows a blob placed on the lower periodic point of protocol C at t =0
and t = T . For t � T the blob only partially aligns with Wu

2D (curve), which is indicative
of an early stage of the advection process (compare with figure 11). At future times,
behaviour essentially similar to that illustrated by figure 11 will occur: the blob
will be progressively forced into the shape dictated by Wu

2D as time advances. The
globally chaotic and essentially three-dimensional tracer dynamics of protocol C, as
established before, then imply that the blob exhibits truly three-dimensional chaotic
advection, which is mirrored in the essentially three-dimensional state of the blob
at t = T . Note the stark contrast with the essentially two-dimensional situations for
protocols A (figure 9) and B (figure 10).
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7. Laboratory experiments
Key aspects of the numerical analysis have been validated experimentally via flow

visualization (dye advection) and flow measurement (three-dimensional PTV). Three-
dimensional PTV measurements of the velocity field and tracer paths of the steady-
forcing case – the fundamental building block of the forcing protocols considered – are
quantitatively compared with numerical predictions. The blob advection in the time-
periodic flows has been tested qualitatively against dye-advection experiments.

7.1. Steady flow: three-dimensional PTV measurements

7.1.1. Data-acquisition procedure

The fluid was seeded with particles with diameter dp = 250 µm. In terms of camera
resolution (1018 × 1019 pixels) this translates via R = 35 mm= 350 pixels into dp = 2.5
pixels, enabling sufficiently accurate particle identification. The cameras operated at a
sampling frequency f = 30 Hz (	tptv = 0.033 s), meaning for the applied wall velocity
U = 4.38 mm s−1 that a wall displacement (and thus maximum particle displacement)
Dptv = 0.145 mm ≈ 1.5 pixel occurred between two consecutive PTV images. Since this
is insufficient for reliable particle tracking – typical particle excursions in the interior
of the cylinder then would take place at (sub)pixel scale – only every fifth image
(Dptv =0.725 mm ≈ 7 pixels and 	tptv = 0.167 s) has been processed by the tracking
algorithm, resulting in significant improvement in performance. In total P =230
successive frames have been obtained, each yielding around 500 velocity vectors.
The time-independence of the flow permitted the combination of the vector fields
corresponding to each time level into one overall vector field and thus resulted in a
total of 127 × 103 velocity vectors. The total time span was tP = (P − 1)	tptv = 38.17 s,
with R =35 mm resulting in a dimensionless wall displacement D2 = UtP /R = 4.8.
(Note D2 = 4.8 forms the final leg of the total displacement D2 = 1.2 + 4.8 = 6. The
initial leg D2 = 1.2 includes the essentially unsteady start-up stage of the flow that has
been excluded from the tracking algorithm.) Vectors u(x) satisfying |u| >U and/or√

x2 + y2 > R have been removed (roughly 10% of the total population), leaving
a velocity field uptv comprising Nptv ≈ 114 × 103 vectors. One-to-one correspondence
with the non-dimensional problem has been achieved by transformation of the PTV
coordinates to the unit cylinder and rescaling of uptv such that U = 1. Furthermore,
data enhancement has been carried through by the addition of boundary vectors,
identically meeting the no-slip condition, on an NΓ × NΓ equidistant grid (NΓ = 3

√
N )

on both endwalls and the mantle. The optimal window size for the interpolation
scheme (see § 4.2) was then σ/R = 0.024.

7.1.2. Velocity field

Figure 13 displays the measured velocity field uptv (panel a) in comparison to the
semi-analytical velocity field ua following Shankar (1997) (panel b) in the plane of
symmetry y = 0. Note that ūptv is attained from uptv via the Gaussian interpolation
scheme (see § 4.2). Overall, both fields exhibit a good qualitative correspondence;
significant departures arise only in the lower corner regions. These are inherent in the
jump in the boundary velocity at the lower rim of the cylinder. Mathematically, this
represents a discontinuity in boundary conditions, which is treated numerically by
definition of a narrow transitional region within which the bottom wall velocity U = 1
smoothly drops off to U = 0 on the bottom rim (see Shankar 1997). Experimentally,
a minute gap between the still mantle and the translating bottom wall is allowed,
establishing a thin in/outflow layer within which the velocity adjusts from U = 1
to U =0 on the respective boundary segments. Both approaches lead to essentially
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Figure 13. Velocity fields in the plane of symmetry y =0. (a) Measured velocity field ūptv.
(b) Analytical velocity field ua .
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Figure 14. Velocity field near the lower left corner in y = 0. (a) Measured velocity field ūptv.
(b) Analytical velocity field ua .

different flow patterns in the bottom-rim region. A close-up of the bottom-rim region
is given in figure 14, showing the measured (panel a) and semi-analytical (panel b)
velocity field at the lower-left corner in the plane y = 0. Contrary to the internal flow
depicted in figure 13, significant differences between measured and semi-analytical
fields occur upon approaching the corner. Relative to the semi-analytical field, uptv

exhibits a deflection in the positive x-direction due to the inflow of ambient fluid at
the lower-left corner through the aforementioned gap.

In addition to the above, a quantitative comparison between the semi-analytical
and measured velocity fields has been performed, which is discussed in the following.
Introduce the discrepancy vector etot = uptv − ua , defining the deviation between the
measured (uptv) and predicted (ua) flow field relative to the unit cylinder. The dif-
ference between the two velocity fields has two contributions, namely etot = eptv + emodel,
accounting for the error induced during data acquisition and data processing (eptv)
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Figure 15. Modelling error εmodel evaluated on the unstructured grid xptv (projection in the
(r, z)-plane). (a) εmodel < 5%, (b) εmodel � 5%.

and the modelling error (emodel). The former includes measuring errors and algo-
rithmic shortcomings of the three-dimensional PTV procedure. The latter comprises
a threefold contribution: approximation errors inherent in (i) the Stokes model and
(ii) the solution procedure of Shankar (1997); (iii) interpolation errors induced by
the interpolation scheme.

An estimate for eptv is found in the velocity field Eptv attained for a non-moving
bottom wall (U =0); non-zero Eptv then embodies the cumulative noise underlying
eptv. Measurements yielded Eptv at roughly 1500 randomly distributed positions and
statistical analysis revealed that eptv = |eptv|, with eptv = Eptv/U and U of the moving
wall experiment, formed a normal distribution with average µ = 0.0072 and standard
deviation σ = 0.0081. This suggests the upper bound of the 96%-confidence interval
e96
ptv = µ + 2σ =0.0234 as an appropriate estimate for the typical experimental error at

any given position x (see Chatfield 1978) and suggests the existence of two regimes:
regime 1: etot � e96

ptv → emodel = 0, regime 2: etot > e96
ptv → emodel = etot − e96

ptv. In regime 1,
the experimental error eptv fully accounts for the discrepancy between measured and
predicted velocity field and, ergo, the modelling error is insignificant in this region
(emodel = 0). For regime 2, extraneous effects alone are insufficient to explain the
attained deviation and thus emodel > 0.

Error analysis has been carried out on the three-dimensional unstructured grid
xptv – thus ruling out possible interpolation errors – in terms of the relative model-
ling error εmodel = emodel/|ua| × 100% and the outcome has been divided into two
categories: (i) εmodel < 5% (including εmodel = 0 for regime 1) and (ii) εmodel � 5%. The
error distribution, projected into the (r, z)-plane, is shown in figure 15 and reveals
that significant modelling errors (regime 2) concentrate in the bottom-rim region.
Note that figures 15(a) and 15(b) contain 94% and 6%, respectively, of the total
number of nodes. These findings align with the previously advanced conclusions that
the discrepancy between numerical and experimental velocity fields ensues primarily
from the essentially different bottom-rim situations. In the non-inertial limit,
disturbances (here discrepancies in the lower-corner flow field) manifest themselves
most prominently in the compact region surrounding their origin (here the bottom-
rim area); further away dissipative effects result in their rapid decay. This explains the
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x

y

Figure 16. Comparison of measured (Xptv) and numerical (Xe) trajectories. The symbols
indicate the final positions (∗, Xptv; �, Xa).

peaking in the bottom-rim region and rapid diminishing outside it of εmodel. A similar
analysis on a structured grid in the plane y = 0 proved consistent with the above (see
Speetjens 2001). Note that this implies that interpolation errors inherent in the use
of structured grids are insignificant for the total error. Overall, the above analysis
revealed a good quantitative agreement between measured and semi-analytical velocity
fields. Accounting for measuring errors, the deviation outside the compact bottom-rim
region typically remained within the 5%-limit.

7.1.3. Trajectories

Experimental particle paths Xptv
t (x0) have been compared with numerical tracer

paths Xa
t (x0) for identical initial position x0 and time span tp = (p − 1)	tptv, with

1 � p � P and P and 	tptv as before. Figure 16 shows Xptv
t and Xa

t for a number
of paths in the time-span range t200 � tp � t230 and shows that the computed paths
almost shadow their real-life counterparts. Significant departures occur only for the
three paths originating from the lower-left corner due to the previously addressed
bottom-rim situations. For the remaining paths |xptv(t) − xa(t)|/R � 0.015, implying
an outstanding agreement between computed and measured paths at any given time
t � tp .

In § 5.1 the projection of three-dimensional trajectories Xa onto the (r, z)-plane is
shown to coincide with the streamline portrait in the plane y = 0 due to the particular
structure of the semi-analytical velocity field ua . Based on the good agreement between
ua and uptv found before, one might expect this projection property to hold for the
measured paths as well. Introduce, in order to verify this conjecture, the Fourier
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Figure 17. Streamline portrait in the plane of symmetry y =0 (a) Xptv , (b) Xa .

expansion

u(x) = 2

[ ∞∑
m=0

uRm cos mθ + uIm sin mθ

]
, (7.1)

for a real variable u, with Fourier spectrum ũm = uRm + iuIm (see Canuto et al. 1987).
The spectrum for ua follows from (5.1) and, in a qualitative sense, is

ũr,zRm
= ur,z/2, ũr,zIm

= 0, ũθRm
= 0, ũθIm

= uθ/2, (7.2)

for m =1 and ũa = 0 for m �= 1. For the spectrum of uptv

|ur,zI1
|

|ur,zR1
| ∼ O(10−2),

|uθR1
|

|uθI1
| ∼ O(10−2),

|ũm|
|ũ1| ∼ O(10−2) for m �= 1, (7.3)

is found, isolating m = 1 as the dominant Fourier mode. Accounting for the experi-
mental error eptv ∼ O(10−2), the spectra (7.2) and (7.3) to a good approximation
coincide, meaning that uptv is in good agreement with the form (5.1), in turn suggesting
that the aforementioned projection property is indeed valid for Xptv . Figure 17 graphi-
cally combines the projected trajectories Xptv (left half) and the streamlines Xa in
y = 0 (right half). Both halves connect smoothly and assume a symmetrical arrange-
ment about the axis x =0, thus forming a good representation of the streamline
portrait at y = 0. This further substantiates the good agreement between numerical
and experimental paths. Near the top the left-right correspondence is lost due to
uptv ∼ O(eptv). Figure 18 provides a close-up of the lower-corner region, showing
that the good qualitative agreement between measured (panel a) and computed
(panel b) streamline patterns persists at smaller-scale levels. In the bottom-rim region,
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Figure 18. Streamline portrait near the left corner in the plane of symmetry y = 0.
(a) Xptv , (b) Xa .

Xptv becomes less pronounced and thus difficult to compare with Xa . In this area
significant discrepancies are to be expected on grounds discussed before.

7.2. Time-periodic flows: dye-advection experiments

The numerical blob advection discussed in § 6.2 has been mimicked in the laboratory
set-up by means of dye experiments. Blobs of passive dye were placed on suspected
periodic points/lines and monitored for one period of the forcing protocol (D2 = 5).
Photographs of the blobs were taken at several stages in the forcing cycle and
qualitatively compared with the numerical predictions.

For protocol A, blue and red dye was injected at the position of the lower and
upper blob, respectively, in figure 9(a). The state of the blobs is shown in figure 19 at
t = 0, T /2, T for experiments (top row) and computations (bottom row), viewing the
(x, z)-plane in the negative y-direction. At all times an outstanding agreement between
predictions and observations is attained; the blobs respond exactly as predicted. The
red blob (elliptic segment of the periodic line) remains almost perfectly intact, apart
from the minor horizontal elongation at t = T/2. The blue blob (hyperbolic segment)
is gradually wrapped around its red companion while converging on the unstable
manifold. Note that the blue blob thus visualizes that manifold.

For forcing protocol B , dye experiments, in an equivalent manner, sought to validate
the situation in figure 10. Red and blue dye was placed on the lower elliptic line and the
hyperbolic line, respectively, and its advection is monitored for one period. The results
are given in figure 20, with lay-out and viewpoint as before. Similar to protocol A,
good qualitative agreement between numerical and experimental results is attained.
Significant deviation is found only for the red blob, the observed deformation of
which is notably higher than predicted numerically, and is believed to result from
both proximity and high deformation rate – at the blob location the stretching rate of
the unstable manifold is λ� 14, compared to λ� 2 for protocol A – of the adjoining
hyperbolic region (see Speetjens 2001). This suggests an extreme sensitivity of the
blob evolution to mismatches in initial conditions. The rightward-pointing tail of the
red blob in figure 20(a), signifying departure from sphericity, for instance partially
intrudes into the hyperbolic region and is therefore exposed to substantial stretching
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t = 0 t = T/2 t = T

Figure 19. Experimental vs. numerical results for forcing protocol A (viewing in the
negative y-direction).

t = 0 t = T/2 t = T

Figure 20. Experimental vs. numerical results for forcing protocol B (viewing in the
negative y-direction).

rates (as is apparent from figure 20). This largely accounts for the discrepancy between
experimental observations and numerical predictions on the red blob. Note that, as for
protocol A, the blue blob outlines part of the unstable manifold of the hyperbolic line.
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t = 0 t = 0

Figure 21. Experimental vs. numerical results for forcing protocol C (viewing in the
negative y-direction).

t = 0 t = T

y

x

Figure 22. Experimental vs. numerical results for forcing protocol C (viewing in the
positive z-direction).

Forcing protocol C hosts isolated periodic points and thus has a flow topology of far
greater complexity than those found for the above periodic-line systems. Experimental
validation of the blob advection in this configuration thus is considerably more
challenging than in the previous cases. The experiments focused on the situation in
figure 12 and resulted in the images shown in figure 21 (layout as before) and figure 22
(viewing in the positive z-direction). Comparison of the experimental and numerical
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evolutions reveals even for the intricate and essentially three-dimensional structure of
the blob at t = T an outstanding agreement.

The dye-advection experiments displayed a high degree of reproducibility and
robustness. Repeated experiments yielded practically identical outcomes for each
protocol; minor differences between numerics and experiments are believed to result
predominantly from minute mismatches in initial conditions.

8. Conclusions
The work presented in this paper concerns a numerical and experimental

investigation of the advection of passive tracers in a non-inertial cylinder flow. One
steady and three time-periodic flows have been considered, the former constituting
the elementary building block of the latter, serving as prototypical three-dimensional
viscous mixing flows. The advection problem is tackled from a topological standpoint
by concentrating on the role of coherent structures in the web of tracer paths (‘flow
topology’) in the process of tracer transport.

The numerical study involved determination of flow topology and corresponding
transport properties. Symmetries emerged as pivotal in this analysis by constituting
an invaluable vehicle for robust and efficient identification of coherent structures, thus
demonstrating the potential of symmetry-based approaches in the present context.
Three out of four flow topologies followed readily from universal symmetry concepts;
in the fourth case symmetries translated into a compact case-specific identification
procedure. An important corollary of time-reversal symmetries is found in that in
bounded systems they invariably imply periodic lines.

The tracer dynamics encompassed three fundamental states: non-chaotic (steady
flow); (quasi-)two-dimensional locally chaotic (protocols A and B); three-dimensional
globally chaotic (protocol C). The nature of the tracer transport proved inextricably
linked to the topological properties of periodic structures and associated coherent
structures (manifolds and tubes). The steady case included a family of elliptic
tubes centred on an elliptic (stagnation) line, within which shear-like fluid flow
and, inherently, non-chaotic tracer dynamics occurred. Protocols A and B hosted
elliptic-type and hyperbolic-type periodic lines and, in consequence, accommodated
coexisting chaotic and non-chaotic regions with (quasi-)two-dimensional dynamics.
The former identified with the region occupied by transversally interacting manifolds
of hyperbolic (segments of) periodic lines; the latter coincided with elliptic tubes,
centred on elliptic (segments of) periodic lines, entrenched in chaotic regions of
the previous kind. The elliptic tubes comprised families of concentric impenetrable
surfaces, akin to the steady case, acting as transport barriers and thus obstructing
global tracer dispersion. Protocol C hosted isolated periodic points, resulting in a
flow topology devoid of transport barriers that consequently permitted unrestricted
three-dimensional chaotic advection.

Time variation in the external forcing formed an essential ingredient for attaining
chaotic tracer motion in the present configuration. It established the repeated reori-
entation of the flow required for obtaining non-closed tracer paths, thus paving the
way to chaotic advection. (For steady forcing paths are closed and thus non-chaotic.)
Time-periodic forcing is particularly suitable in this respect in that it offers a way for
systematic reorientation for arbitrary time spans.

Examination of finite-size material objects exposed, similar to the findings on
individual tracers, transport properties and deformation patterns governed entirely by
the flow topology. Objects entrapped in elliptic tubes exhibited shear-like deformation



Advection in three-dimensional Stokes flows 103

in the annular region between tubes, essentially equivalent to that found for the steady
case. Objects released in the zone of influence of manifolds progressively aligned with
the unstable manifold, thus designating the latter as a ‘deformation template’ into
which objects are asymptotically shaped.

Laboratory experiments validated several key aspects of the numerical analysis.
Flow measurements on the steady flow revealed good (quantitative and qualitative)
agreement between the measured and semi-analytical velocity field. Moreover, an
outstanding correspondence between measured and computed trajectories has been
found. Flow visualization showed good qualitative correspondence between observed
and simulated advection of finite-size material objects. Overall, predictions and
experiments agreed such that the computational results qualify as representative
of real-life phenomena.

The conclusions drawn above have several potential spin-offs to industrial viscous
mixing flows, a key motivator for the present work, for which effective mixing
is the principal goal. The study advanced periodic lines as indicative of two-
dimensional dynamics and thus, in the scope of time-periodic systems, as synonymous
with inefficient mixing. Global three-dimensional dispersion, the targeted state, is
achieved only in systems which exclusively host isolated periodic points. Design codes
for mixing machinery involving time-periodic forcing (e.g. by alternately activated
impellers) must thus aim to avoid periodic lines. It is here that the connection
between periodic lines and time-reversal reflectional symmetries comes into play. The
latter imply the former; the symmetries signify periodic lines and inefficient mixing.
Isolation of symmetries requires only gross knowledge of flow and geometry and
thus is feasible during early design stages. Symmetry analysis therefore is a powerful
design tool that should form an integral part in the development of mixing devices.
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